

## **Overview of Renewable Energy Initiatives** – CARILEC Utility Members

OOCUR Annual Conference November 2006

Presenter: Nigel Hosein (Executive Director – CARILEC)



# **Brief Background on CARILEC**

## Membership (to date):

- Regional Association of Electric Utilities formed in 1989
- Comprised of 30 Full (Utility) Members from 28 countries in the Caribbean Region
- Also consists of 48 Associate Members (companies that provide equipment, materials and services to the utilities) and 4 Affiliate Members.

## Main services provided:

- Training courses, seminars, conferences
- Hurricane restoration coordination
- Benchmarking Information
- Regulatory Advisory Role
- Technical Advisory Role
- Legislative and Government Relations



# Key issues to note

- 1) Energy mix needs to be diverse, efficient and sustainable taking least cost supply of electricity into consideration.
- 2) Satisfy customers' expectations with respect to:-
  - Reliability
  - Price
  - Quality
- 3) Renewables must be separated into two categories and incentives provided for each:-
  - Customer-based initiatives
  - Large scale utility grid-based systems
- 4) Impact of infrastructure required for use of renewables in grid-based systems and competing alternative uses for this infrastructure (e.g. land in smaller islands).
- 5) Need to carefully identify technologies that are economical and realistic for the region to implement given our size. **Note:** not because technology is feasible in larger countries means it will be feasible in the smaller ones.
- 6) Utilities do not have the resources to fund large projects involving unproven technology.
- 7) In some countries, current Regulations and/or license agreements do no cater for the utility's recovery of costs invested in renewables.



### Commercially available and emerging RE Technology

| Renewable Technology | Commercially<br>available | Emerging<br>technology |
|----------------------|---------------------------|------------------------|
| Wind turbines        | $\checkmark$              |                        |
| Hydropower           | $\checkmark$              |                        |
| Biomass              | $\checkmark$              |                        |
| Geothermal           | $\checkmark$              |                        |
| Photovoltaic systems | $\checkmark$              |                        |
| Fuel cells           | $\checkmark$              | $\checkmark$           |
| Solar thermal        | $\checkmark$              | $\checkmark$           |
| Wave energy          |                           | $\checkmark$           |
| Tidal energy         |                           | $\checkmark$           |



## Wind Turbines:

### **Existing Wind Farms:**

- Jamaica and Curacao
- Wind Farms also in Guadeloupe and Martinique (not CARILEC members)

### **Feasibility Studies with Wind Measurement:**

- Studies and wind measurement data collection in Aruba, Barbados, Dominica, Grand Cayman, Grenada, Guyana, Nevis, Puerto Rico, St. Kitts, St. Lucia, St. Vincent
- Barbados, Guyana & Puerto Rico are at a close stage of having wind farms within the next two years

### **Feasibility Studies:**

- All other utilities have done some sort of feasibility study in varying detail



## Wind Turbines:

### Advantages:

- Wind is free, no fuel needed
- Produces no waste greenhouse gases
- The land beneath can still be used for farming
- Maintenance requirements are minimal

### **Disadvantages:**

- Wind is not always predictable some days there is no wind
- Need for back-up generation (note this must be considered in economic evaluations)
- Suitable land areas are expensive and compete with other development activities (hotels, housing)
- Hurricanes and storms vulnerability
- Corrosive environment due to salt atmosphere being on an island
- NIMBY (Not In My Back Yard) resistance from the public. (Some people feel that covering the landscape with towers can be unsightly and/or noisy)



## Hydropower:

### **Existing Hydro Plants:**

- Dominica, Guyana, Jamaica and St. Vincent

### Advantages:

- Hydro is free, no fuel needed
- Produces no waste greenhouse gases
- Always available/predictable No need for back-up generation

### **Disadvantages:**

- Of course can only be used where water is in abundance
- Potential harmful effects on eco-systems downstream of dams



## **Geothermal:**

### **Feasibility Studies:**

- For obvious reasons only in volcanic islands (e.g. St. Lucia, St. Vincent & Montserrat)

### Advantages:

- Geothermal is free, no fuel needed
- Always available/predictable No need for back-up generation
- Potential for export of electricity to neighboring islands if there is excess capacity

### **Disadvantages:**

- Geological risks and expensive exploratory activities
- Restrictive permitting processes to protect tourist attractions
- Very high investment costs
- Highly corrosive environment for metal components of plant



### Others:

### Biofuels

- Investigations being carried out in St. Kitts, Guyana, Puerto Rico and others.
- Being considered as replacement for sugar cane and/or banana industries in some islands

### Ocean Thermal Energy Conversion (OTEC)

Currently being explored by Grand Cayman - MOU has been signed with a company promoting the technology

### Ocean Currents

Currently being explored by Bermuda

- PPA signed with a company promoting the technology (expecting production in 2008)



### World electricity production in 2003

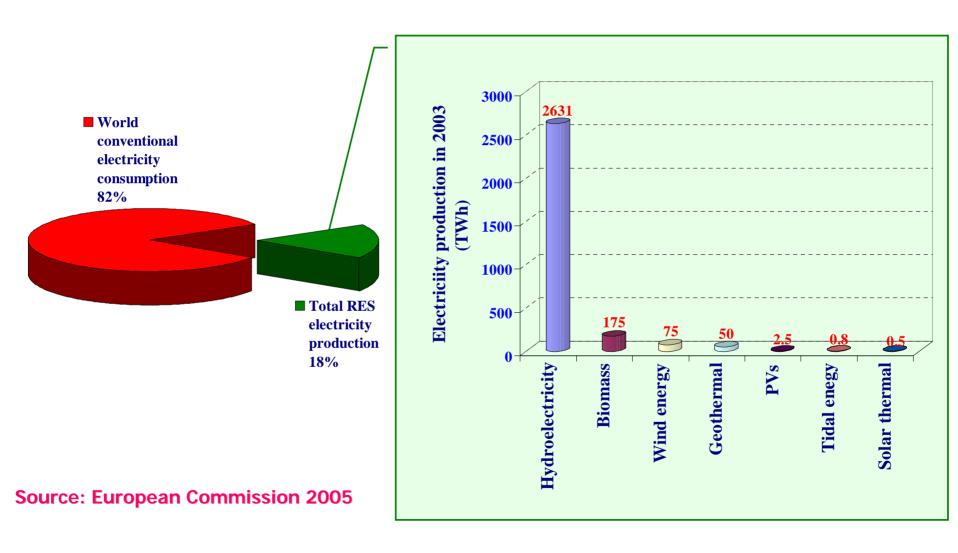



Chart from: EURELECTRIC – NESIS Seminar 2006



## **Current Energy Mix in European Union**

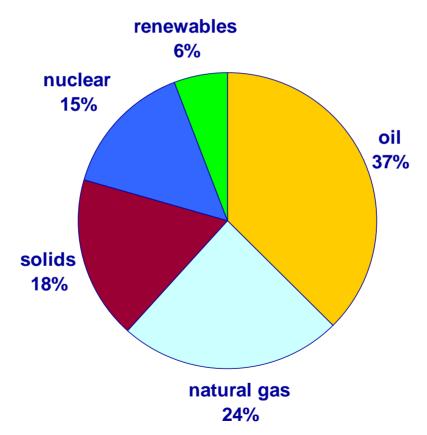



Chart from: EURELECTRIC – NESIS Seminar 2006 Source Data from: European Commission Directorate-General for Energy and Transport



## Will EU-25 achieve its targets in 2010?

|                 | Target 2010                     | Likely achieve-<br>ment without<br>additional policies | With additional<br><u>existing</u> policies |
|-----------------|---------------------------------|--------------------------------------------------------|---------------------------------------------|
| RES-Electricity | 21%                             | 18-19%                                                 | 22-24%                                      |
| RES-Heating     | No % target<br>Currently at 11% | 12%                                                    | 15%                                         |
| Biofuels        | 5.75%                           | ~2-3%                                                  | ~5%                                         |
| RES total       | 12%                             | 8-9%                                                   | 11-12%                                      |

Chart from: EURELECTRIC – NESIS Seminar 2006 Source Data from: European Commission Directorate-General for Energy and Transport



## EU25 Differences in the progress achieving the RES-E target

### **RES-E** share in EU25 – current situation

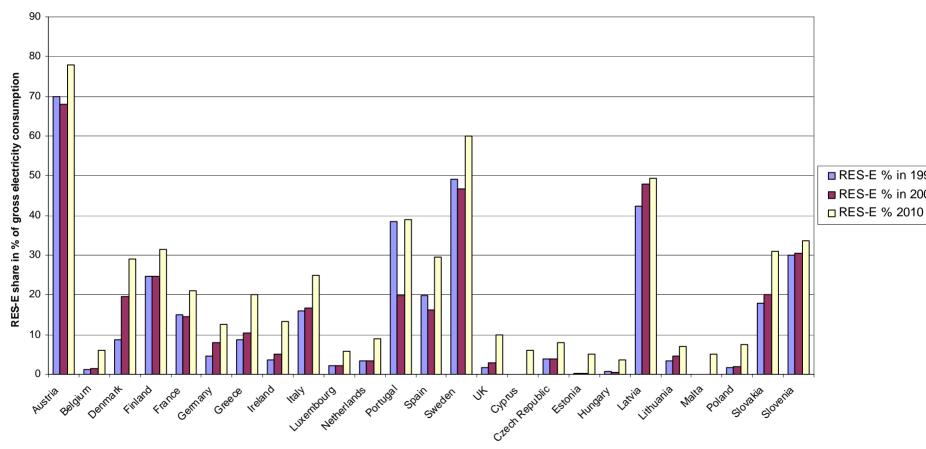



Chart from: EURELECTRIC - NESIS Seminar 2006

Source Data from: European Commission Directorate-General for Energy and Transport



# Suggested way forward

### A few items to be considered:

- Assistance required in attracting funding for capital investment in RE systems
- Use of proven/economical technology should only be considered unless someone with "deep pockets" is willing to take the risks
- Regulatory reform required (currently ongoing in most islands)
  - Collaboration between utilities and regulators to achieve a win-win situation for all stakeholders.
  - There is no "one-size-fits-all" solution (different ownership structures among the utilities, etc.)
  - There should be sharing of efficiency gains between utility and customers
  - PPAs must clearly define reliability responsibility issues
- 4. Incentives required by governments to promote use of RE technology in both consumer-based and large scale utility grid-based systems
- 5. "Pooling" of resources to share the risks and experiences in some of the "emerging" RE technologies
- 6. "Pooling" of projects to present a bigger market for manufacturers
  - major (wind turbine) manufacturers are fully booked with orders for the next 2-3 years
  - prices are at a premium for small orders because of current demand
  - modifications to suit Caribbean conditions (storms & corrosion) at a significant premium



# **THANK YOU**

# **Questions / Discussion**