Managing Water Loss: Strategies for the Assessment, Reduction and <u>Control of Non-Revenue</u> Water (NRW) in Trinidad and Tobago.

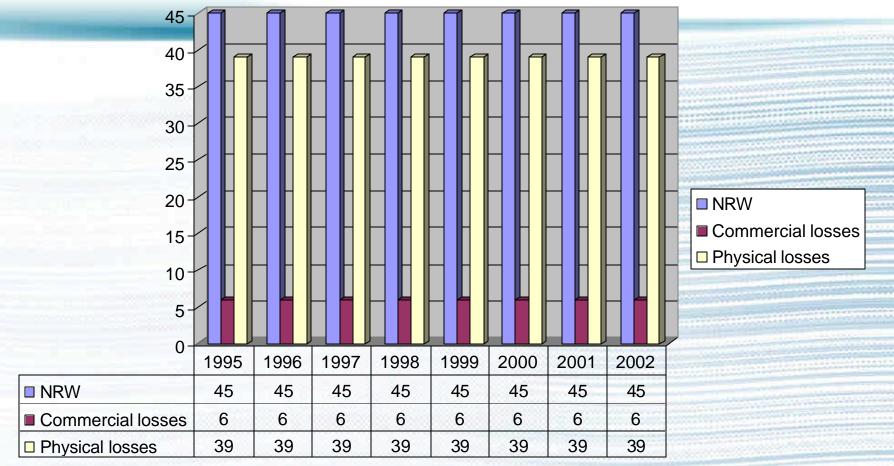
Structure of the Presentation

NRW in Trinidad and Tobago

Major Factors contributing to NRW

Benefits of reducing NRW

 Development of a Water Loss Strategy for Trinidad and Tobago



Components of Water Balance for a Transmission or Distribution System

		Billed Authorised Consumption	Billed Metered Consumption (including water exported)	<u>Revenue</u> <u>Water</u> M ³ /year	
	<u>Authorised</u> <u>Consumption</u>	M ³ /year	Billed Un-metered Consumption		
		<u>Unbilled</u> <u>Authorised</u> Consumption	Unbilled Metered Consumption		
<u>System</u> Input		M ³ /year	Unbilled Unmetered Consumption	Non-	
<u>Volume</u>		<u>Apparent Losses</u>	Unauthorised Consumption	Revenue Water	
	Water Losses	M ³ /year	Metering Inaccuracies		
M³/ year		Real Losses	Leakage on transmission and/or distribution mains		
	M³/year		Leakage and overflows at Utility's storage tanks	M³/year	
		M ³ /year	Leakage on service connections up to point of customer metering		
CUR Sor	urce: IWA		customer metering	REGULA	

ATION OF CARIBBEAN

NRW in Trinidad and Tobago

Best Practice in Developing Countries - < 23% Best Practice in Developed Countries - < 16%

Major Factors affecting NRW

- Illegal Connections
- Age of Pipe Network
- Poor Maintenance of Network
- Water Scheduling
- Customer side Leakage
- Absence of coherent strategy for ALC

Benefits of reducing NRW

Improvement in Demand Management Policies

- Continued water loss impacts negatively on the effort to limit demand
- Economic benefits of reducing NRW
 - Less money to produce water in terms of chemicals, energy, staff and maintenance
 - Capital costs for expansion works can be deferred
 - Additional income from revenue water is available to the utility for its use
 - Reduced costs to the treatment of wastewater

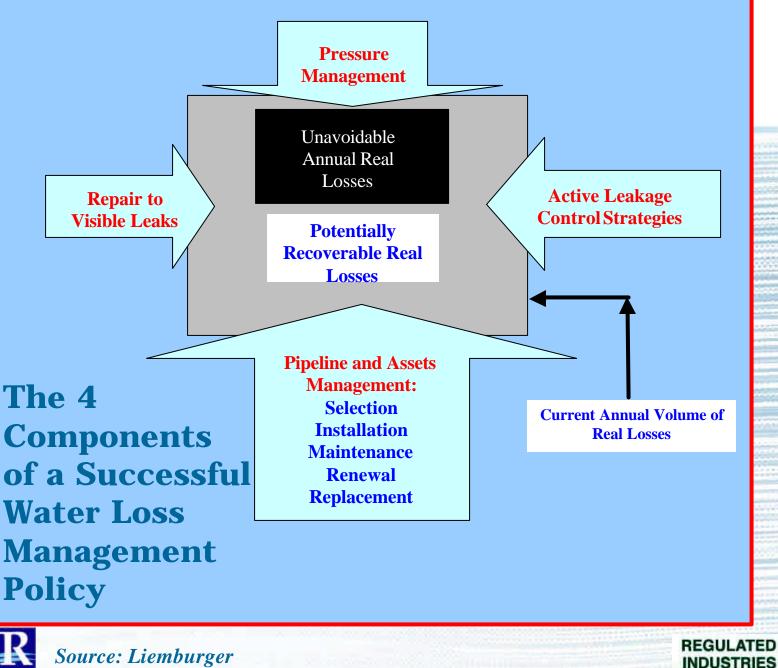
Benefits of reducing NRW

Public Perception of the Utility

Outcomes:

- Improved service
- Fewer leaks
- Extension of the distribution system

Development and Implementation of Water Loss Strategies



Private Sector Involvement

- Use of a NRW performance based contract
- Provides expert help immediately
- Necessary as project management resources and skill not available in house
- Cost effective solution
- Competition within the utility sector
- A limited alternative to full PSP
- Accelerated implementation programme
- Capital investment removed from State

COMMISSIO

Other Major Strategies

- Universal Metering
- Bulk Metering
- Tariff Adjustment
- Improvement to Infrastructure Records
- Telemetry Installation
- Network Analysis.

Preparation

- Identification of costs and acquisition of funding for Programme
- Determination and procurement of materials and equipment for Programme
- Establishment of components of water balance, estimation of leakage level and setting of leakage targets

Implementation Active Leakage Control Strategies • Repair to visible leaks

Sounding Programme

Repair to customer side leakage

Implementation Support Structures

- Training
- Human Resources
- Transport and Equipment
- Public Education and Information
- IT support

Implementation Major Strategies

Universal Metering

Tariff Setting

• Mains Replacement

Phase 2 – 42 months

- Implementation **Active Leakage Control Strategies** Pressure zoning • DMA setup • WWMD setup Trunk main leakage

 - Reservoir leakage

• Apparent Losses

Phase 2 – 42 months

Implementation Major Strategies • Bulk Metering

Infrastructure Records Update

Phase 3 – 24 months

Implementation Major Strategies • Telemetry

Assets management

• Network Analysis

Phase 4 – Ongoing

Maintenance

Active Leakage Control Strategies

- Continuous Night Flow Monitoring
- Reassessment of leakage control activities
- Improvement to ELL calculation
- New policy and technology options
- Maintenance of facilities and equipment

Comparative Costs of Programme

- Trinidad > TT\$ 200M (US\$ 32M) over a 10 year period (Bristol Water, 1997)
- State of Selangor, Malaysia Similar but larger programme. US\$ 105M dollars (TT\$ 661M) over a period of 9 years (5M population, 13,000km distribution system)
- Port Moresby 1 year project is being accomplished at a cost of US\$ 590,000 (TT\$ 3.7M). System supply of 165 Ml/d

Conclusion

- Water shortages exist
- Conservation of the commodity is of major concern
- Efficacy of the utility is a pressing issue
- Paper an attempt to evaluate and update the local situation
- Proposes solutions for the reduction and control of NRW

