The Willingness to Pay for Changes in Water, Wastewater and Electricity Services in Trinidad and Tobago Preliminary Survey Results

Presenters:

Kameel Virjee Mohan Chadee

McGill University
Regulated Industries Commission

OOCUR Conference September 2003 Port of Spain, Trinidad

Structure of Presentation

- Acknowledgements
- Introduction
- Methodology
- Sample characteristics
- Survey Results
- Conclusions
- Lessons Learned
- Future Work

Acknowledgements

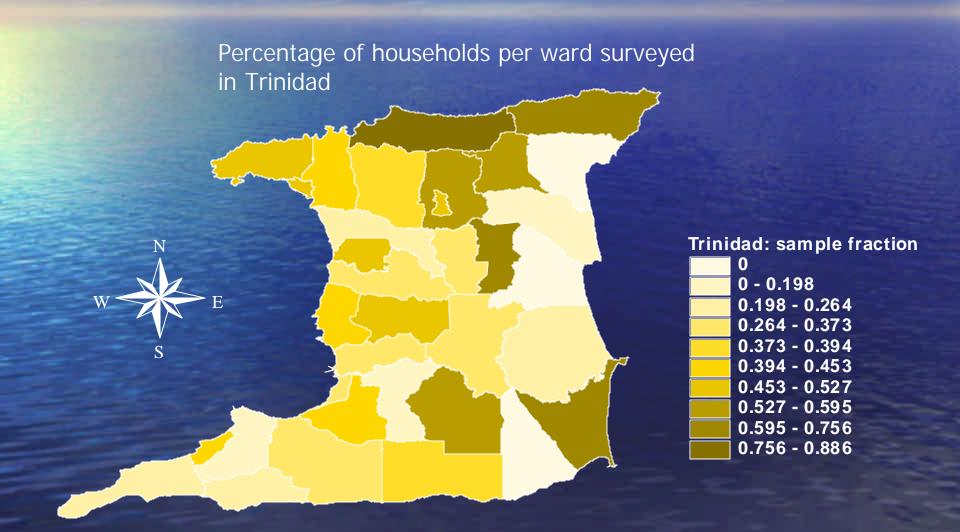
- Regulated Industries Commission (Trinidad)
- Postgraduate Scholarship Funding
 - International Development Research Centre (IDRC) (Canada)
 - National Science and Engineering Research Council (NSERC) (Canada)
- Staff of RIC, UWI and CSO

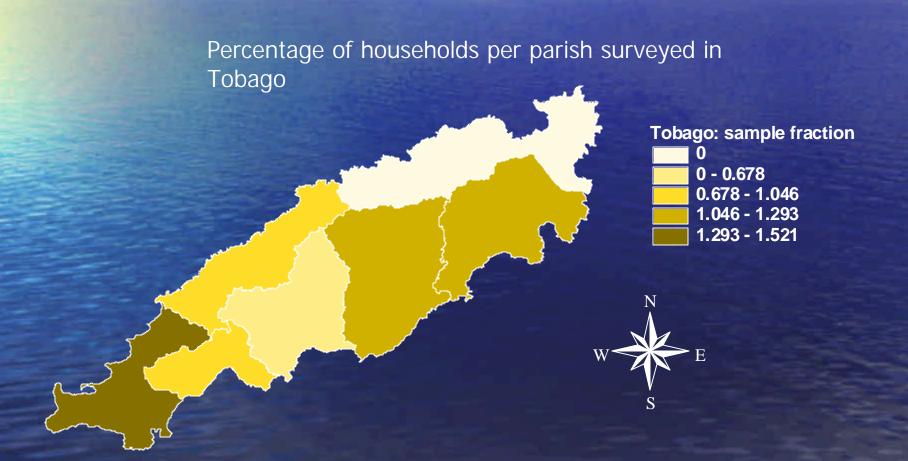
Introduction

- Trinidad and Tobago
 - Population : 1.3 million
 - GDP per capita (PPP) : US\$9500*
 - Water supply/sewerage service: Water and Sewerage Authority (WASA)
 - Electricity: Trinidad and Tobago Electricity
 Commission (T&TEC)

^{*} Source: CIA World Fact Book, 2003

Survey Purpose


- RIC is at the preparatory stage prior to the rate review process under Price Cap Regulation
- WTP Survey is an effective tool
 - Designing new tariff structures
 - Level and targeting of subsidy
 - Informing other policy decision


Survey Purpose

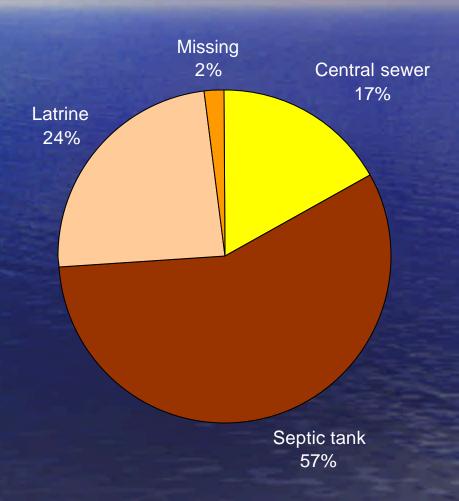
- Ascertain the current level of water, wastewater and electricity services in Trinidad and Tobago
- Estimate the maximum willingness to pay (WTP) for changes to the status quo service levels

- Hypothetical stated preference techniques
 - Contingent Valuation
 - One policy option presented
 - Iterative bidding game used to develop an interval estimate of maximum WTP
 - Discrete Choice experiments (attribute based stated preference techniques)
 - Many policy bundles presented
 - Respondent chooses preferred option in a series of choice sets

- Sampling method
 - Only domestic users in sample frame
 - Central Statistical Office (CSO) CSSP design used
 - Sample size → 1420 households nationally
 - Non-response → 12.5%

Sample Characteristics

- 59 % of respondents were females and 41% males
- 84% were over 30 years
- 82 % of respondents were either the head of the household or spouse /partner


- Water supply
 - 83% had either in house or standpipe levels of service (WASA reports 92% coverage)
 - 27% of the population relies upon two or more sources
- Water supply reliability
 - 27% had a 24 hour supply
 - 29% received no water at all

- Storage facilities
 - 68% of houses had local storage facilities
 - Average storage amount -> 610 gallons /
 household
 - Total domestic local storage → 200 million gallons nationally

- Water supply pressure
 - Approx 50% said pressure was good-excellent
- Water supply quality
 - 91% found overall quality to be satisfactory
 - 20% found colour to be unacceptable
- Reasons for not having a water connection
 - 40 % of respondents said that connection is not available/no mains nearby.
 - 18% indicated that land tenure not secured.

Wastewater

40% preferred an improved system esp. latrine users

- Electricity
 - 92% of the respondents had electricity
 - 83% found service to be satisfactory
 - 75% of the sample claimed infrequent outages

WTP - all water users

Bidding game results

Primary water source	Mean willingness to pay (TT\$/month)
WASA in house piped connection	48
Standpipe	62
Truck borne	57
Supply from neighbour	46
Rainwater	43
Natural sources	78

WTP – all water users

Linear WTP model (OLS estimates)

Parameter	estimate	t-statistic
Intercept	57.77	5.16
Income (1000 TT\$)	1.70	2.71
Current bill amount (TT\$/quarter)	0.08	5.36
Squatter (1= squatting; 0 = not squatting)	25.21	2.35
Piped (1 = currently have piped connection; $0 = $ currently do not have piped connection	-16.66	-2.25
Tanks not connected to WASA mains (1 = have non connected tanks; 0 = do not have tanks not connected to WASA mains	-5.15	-1.65

WTP - Choice models

WTP water - Conditional logit model

Parameter	Units	Estimate
Reliability (days per week)	1 = 4 days per week	3.28
Reliability (days per week)	1 = 7 days per week	3.81
Reliability (hours per day)	1 = 12 hours per day	2.06
Reliability (hours per day)	1 = 24 hours per day	1.66
Pressure	1 = medium	1.51
Pressure	1 = high	0.91
Quality	1 = medium	2.15
Quality	1 = high	2.16
Price	Scaled price (continuous)	-0.87

- Willingness to Pay Wastewater (OLS estimates)
 - Average TT\$27 per month

Parameter		Estimate	t-statistic
Intercept		38.15	4.52
Income (1000 TT\$)		1.68	3.69
Current water bill amount (TT\$/quarter)		0.02	1.86
Squatter (1= squatting; 0 = not squatting)		19.95	2.47
Tanks not connected to WASA mains (1 = have non connected tanks; 0 = do not have tanks not connected to WASA mains		-4.65	-1.99
Class of service (1 to 5 depending upon hours of service per week)	Class = 1 (168 hrs/week) Class = 2 (120-168 hrs/week)	7.91 6.11	2.87 1.39
	Class = $3 (84-120 \text{ hrs/week})$	4.53	1.35
	Class = 4 (48-84 hrs/week) Class = 5 (<48 hrs/week)	2.02 0 ^a	0.53

- Willingness to Pay Electricity (OLS estimates)
 - Average WTP : TT\$92 monthly

Parameter		Estimate	t-statistic
Intercept		58.00	9.41
Income (1000 TT\$)		3.82	7.91
Frequency of outages	Weekly Monthly Infrequently Never	-8.89 -8.89 -13.74 0 ^a	-1.25 -1.49 -2.54
Household owns:	Water heater Washer Television	10.17 5.46 10.88	3.72 4.92 2.19

Conclusions

- Coverage in water sector is lower than utility estimates (83% vs. 92%)
- Changes to reliability is the most important water service improvement
- WTP for water is lower with local storage
- WTP for water highest amongst standpipe users
- No net WTP amongst those with in house connections

Conclusions

- Increased water reliability → increased WTP for wastewater
- WTP for water and wastewater is higher amongst squatters
- Electricity coverage is good but there is still a net WTP for increases in the current level of service

Lessons Learned

- WTP survey is an effective tool for
 - Measuring utility service
 - Quantifying consumer priorities
- Quality control in survey administration is critical
- Comprehensive understanding of 'question' is mandatory

Future Work

- Policy
 - Estimation of social costs/benefits accruing from various pricing policies
 - Design of targeted subsides
- Theory
 - Discrete choice modeling of choice set data with socioeconomic parameter/ at the individual level
 - Quantitative comparison of models generated from CV and CM data